Tissue factor pathway inhibitor gene disruption produces intrauterine lethality in mice.
نویسندگان
چکیده
Tissue factor pathway inhibitor (TFPI) is a multivalent Kunitz-type proteinase inhibitor that directly inhibits factor Xa and, in a factor Xa-dependent fashion, produces feedback inhibition of the factor VIIa/TF catalytic complex responsible for the initiation of coagulation. To further define the physiologic role of TFPI, gene-targeting techniques were used to disrupt exon 4 of the TFPI gene in mice. This exon encodes Kunitz domain-1 of TFPI, which is required for factor VIIa/TF inhibition. In mice heterozygous for TFPI gene-disruption, TFPI(K1)(+/-), an altered form of TFPI lacking Kunitz domain-1, circulates in plasma at a concentration approximately 40% that of wild-type TFPI. TFPI(K1)(+/-) animals have plasma TFPI activity approximately 50% that of wild-type mice, based on a functional assay that measures factor VIIa/TF inhibition, and have a normal phenotype. Sixty percent of TFPI(K1)(-/-) mice die between embryonic days E9.5 and E11.5 with signs of yolk sac hemorrhage. The extent of structural abnormalities within the yolk sac vascular system appears to mirror the condition of the embryo, suggesting that the embryonic and extra-embryonic tissues are both responding to same insult, presumably circulatory insufficiency. Organogenesis is normal in TFPI(K1) null animals that progress beyond E11.5, but hemorrhage, particularly in the central nervous system and tail, is evident during later gestation and none of the TFPI(K1)(-/-) mice survive to the neonatal period. The presence of immunoreactive fibrin(ogen) in the liver and intravascular thrombi is consistent with the notion that unregulated factor VIIa/TF action and a consequent consumptive coagulopathy underlies the bleeding diathesis in these older embryos. Human TFPI-deficient embryos may suffer a similar fate because an individual with TFPI deficiency has not been identified.
منابع مشابه
RAPID COMMUNICATION Tissue Factor Pathway Inhibitor Gene Disruption Produces Intrauterine Lethality in Mice
Tissue factor pathway inhibitor (TFPI) is a multivalent Kurhage. The extent of structural abnormalities within the yolk sac vascular system appears to mirror the condition of the nitz-type proteinase inhibitor that directly inhibits factor Xa and, in a factor Xa–dependent fashion, produces feedback embryo, suggesting that the embryonic and extra-embryonic tissues are both responding to same ins...
متن کاملFactor VII deficiency rescues the intrauterine lethality in mice associated with a tissue factor pathway inhibitor deficit.
Mice doubly heterozygous for a modified tissue factor pathway inhibitor (TFPI) allele (tfpi delta) lacking its Kunitz-type domain-1 (TFPI+/delta) and for a deficiency of the factor VII gene (FVII+/-) were mated to generate 309 postnatal and 205 embryonic day 17.5 (E17. 5) offspring having all the predicted genotypic combinations. Progeny singly homozygous for the tfpidelta modification but with...
متن کاملEndothelial-derived tissue factor pathway inhibitor regulates arterial thrombosis but is not required for development or hemostasis.
The antithrombotic surface of endothelium is regulated in a coordinated manner. Tissue factor pathway inhibitor (TFPI) localized at the endothelial cell surface regulates the production of FXa by inhibiting the TF/VIIa complex. Systemic homozygotic deletion of the first Kunitz (K1) domain of TFPI results in intrauterine lethality in mice. Here we define the cellular sources of TFPI and their ro...
متن کاملA balance between tissue factor and tissue factor pathway inhibitor is required for embryonic development and hemostasis in adult mice.
Inactivation of the murine tissue factor (TF) gene or tissue factor pathway inhibitor 1 (TFPI) gene results in embryonic lethality, indicating that both are required for embryonic development. We have shown that expression of low levels of TF from a transgene (hTF) rescues TF-null embryos. However, low-TF mice (mTF(-/-)/hTF+) have hemostatic defects in the uterus, placenta, heart, and lung. In ...
متن کاملSmall Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway.
The small Maf proteins, MafF, MafG, and MafK, possess a leucine zipper (Zip) domain that is required for homodimer or heterodimer complex formation with other bZip transcription factors. In this study we sought to determine the identity of the specific constituent that collaboratively interacts with Nrf2 to bind to the Maf recognition element in vivo. Studies in vitro suggested that Nrf2 forms ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 90 3 شماره
صفحات -
تاریخ انتشار 1997